192 research outputs found

    Influence of Defects on In-Plane Dynamic Properties of Hexagonal Ligament Chiral Structures

    Get PDF
    Although the six-ligament chiral structure has many unique properties, due to its special structure, the stress concentration is prone to defects. In addition, additive manufacturing is also prone to defects. This paper studies the effect of defects, which is helpful for the better application of the six-ligament chiral structure. Several new six-ligament chiral structures with random and concentrated defects were designed to explore the effects of the defects on the in-plane dynamic properties. The structures were studied with the finite element ANSYS/LSDYNA numerical simulation and experimental methods. According to the defect-free six-ligament chiral structures exhibiting different deformation modes at different impact velocities, the effects of the defect rate and type (concentrated and random defects) on the six-ligament chiral structure, the in-plane impact deformation mode and energy absorption characteristics are discussed. The research results show that the defect rate and type reduce the energy absorption characteristics of the chiral structure to varying degrees, and the impact deformation mode also changes under medium- and low-speed impact. With the increase in speed, the influence of the defects on the deformation mode weakens. Moreover, the effects of the concentrated and random defects on the platform stress are different. When the defect rate is low, the effect of the random defects is more significant, and as the defect rate increases, the effect of the concentrated defects is more obvious. The study can provide guidance for structural design, predict the failure form of structures containing defects when they are impacted, and realize material recycling

    A Longitudinal Analysis about the Effect of Air Pollution on Astigmatism for Children and Young Adults

    Full text link
    Purpose: This study aimed to investigate the correlation between air pollution and astigmatism, considering the detrimental effects of air pollution on respiratory, cardiovascular, and eye health. Methods: A longitudinal study was conducted with 127,709 individuals aged 4-27 years from 9 cities in Guangdong Province, China, spanning from 2019 to 2021. Astigmatism was measured using cylinder values. Multiple measurements were taken at intervals of at least 1 year. Various exposure windows were used to assess the lagged impacts of air pollution on astigmatism. A panel data model with random effects was constructed to analyze the relationship between pollutant exposure and astigmatism. Results: The study revealed significant associations between astigmatism and exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and particulate matter (PM2.5) over time. A 10 {\mu}g/m3 increase in a 3-year exposure window of NO2 and PM2.5 was associated with a decrease in cylinder value of -0.045 diopters and -0.017 diopters, respectively. A 0.1 mg/m3 increase in CO concentration within a 2-year exposure window correlated with a decrease in cylinder value of -0.009 diopters. No significant relationships were found between PM10 exposure and astigmatism. Conclusion: This study concluded that greater exposure to NO2 and PM2.5 over longer periods aggravates astigmatism. The negative effect of CO on astigmatism peaks in the exposure window of 2 years prior to examination and diminishes afterward. No significant association was found between PM10 exposure and astigmatism, suggesting that gaseous and smaller particulate pollutants have easier access to human eyes, causing heterogeneous morphological changes to the eyeball

    The Technology of Mould Steel for Online Pre-hardening

    Get PDF
    AbstractThis article describes a production method of mould steel pre-hardening, and focus on the advantage of this method, The technical core of method is the variable frequency and variable amplitude pulse uniform high-precision temperature control, which achieved by using strong-medium-weak water cooling, gas-water cooling and gas mist cooling composite cooling control technology. Optimizing the cooling rate path is a good method of optimizing quenched organization and structure

    Spermidine improves the antioxidant capacity and morphology of intestinal tissues and regulates intestinal microorganisms in Sichuan white geese

    Get PDF
    IntroductionIntestinal health is very important to the health of livestock and poultry, and is even a major determining factor in the performance of livestock and poultry production. Spermidine is a type of polyamine that is commonly found in a variety of foods, and can resist oxidative stress, promote cell proliferation and regulate intestinal flora.MethodsIn this study, we explored the effects of spermidine on intestinal health under physiological states or oxidative stress conditions by irrigation with spermidine and intraperitoneal injection of 3-Nitropropionic acid (3-NPA) in Sichuan white goose.Results and discussionOur results showed that spermidine could increase the ratio of intestinal villus to crypt and improve intestinal morphology. In addition, spermidine can also reduce malondialdehyde (MDA) accumulation caused by 3-NPA by increasing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) enzyme activity, thus alleviating intestinal damage. Furthermore, spermidine can regulate intestinal digestive enzyme activities and affect intestinal digestion and absorption ability. Spermidine can also promote an increase in intestinal microbial diversity and abundance and alleviate the change of microflora structure caused by 3-NPA. In conclusion, spermidine promotes the production of beneficial intestinal metabolites such as Wikstromol, Alpha-bisabolol and AS 1–5, thus improving the level of intestinal health. Taken together, these results indicate that spermidine can improve intestinal health by improving intestinal morphology, increasing antioxidant capacity and regulating intestinal flora structure

    Identification of different MRI atrophy progression trajectories in epilepsy by subtype and stage inference

    Get PDF
    Artificial intelligence (AI)-based tools are widely employed, but their use for diagnosis and prognosis of neurological disorders is still evolving. Here we analyse a cross-sectional multicentre structural MRI dataset of 696 people with epilepsy and 118 control subjects. We use an innovative machine-learning algorithm, Subtype and Stage Inference, to develop a novel data-driven disease taxonomy, whereby epilepsy subtypes correspond to distinct patterns of spatiotemporal progression of brain atrophy.In a discovery cohort of 814 individuals, we identify two subtypes common to focal and idiopathic generalized epilepsies, characterized by progression of grey matter atrophy driven by the cortex or the basal ganglia. A third subtype, only detected in focal epilepsies, was characterized by hippocampal atrophy. We corroborate external validity via an independent cohort of 254 people and confirm that the basal ganglia subtype is associated with the most severe epilepsy.Our findings suggest fundamental processes underlying the progression of epilepsy-related brain atrophy. We deliver a novel MRI- and AI-guided epilepsy taxonomy, which could be used for individualized prognostics and targeted therapeutics

    Modeling pedestrian safety at roundabouts

    Get PDF
    This study proposes a method for using a human participant in a field experiment to model pedestrian safety at roundabouts in the United States. Studies show that roundabouts are safer for vehicles, but are inconclusive as to whether pedestrians are at greater risk at roundabouts than at signalized intersections. Recent simulations, including virtual reality, can model pedestrian vehicle interaction, but the proposed technique could use real-world data to calibrate these models. Eight hours of video was made to gather data at a signalized intersection and a roundabout. A physical simulation was used to assess the pedestrian’s cross/don’t cross decision. Standard walking pace was simulated at 3.5 feet per second and a disabled pedestrian at half that pace. This study focused on factors such as signalization, approach streams, exit vs. entrance lanes, pace and direction to provide a realistic picture of the cross vs. don’t cross decision. Data showed that slow pedestrians had a significantly higher rate of don’t cross decisions at the roundabout. Roundabouts are thought to be safer for pedestrians than signalized intersections due to a lower number of conflict points, but the confusing multiple streams of roundabout traffic converging on exit lanes and the frames of approaching traffic at roundabout entrances may mean that another concept may be needed to fully capture pedestrian risks. The data on ‘relevant traffic’ showed that pedestrians had to be attentive to almost six times as many approach streams of traffic in the roundabout as in the signalized intersection. The value of this study is four-fold: 1) Future studies could revisit the conflict point at the core of Traffic Conflict Analysis and consider conflict streams as well; 2) Future studies could consider the cross/don’t cross decision as an important data point with which to evaluate the safety of roundabout crossings; 3) Slow pedestrians fared worse in their ability to cross at the roundabout than at the signalized intersection; 4) The human participant in a field experiment method can be a valuable source of data for calibrating pedestrian safety simulation systems

    Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1

    Get PDF
    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases
    • …
    corecore